关于转换电流变化率
当负载电流增大,电源频率的增高或电源为非正弦波时,会使转换电流变化率变高,这种情况较易在感性负载的情况下发生,很容易导致器件的损坏。此时可以在负载回路中串联一只几毫亨的空气电感。
测量方法
鉴别可控硅三个较的方法很简单,根据P-N结的原理,只要用万用表测量一下三个较之间的电阻值就可以。
阳极与阴极之间的正向和反向电阻在几百千欧以上,阳极和控制较之间的正向和反向电阻在几百千欧以上(它们之间有两个P-N结,而且方向相反,因此阳极和控制较正反向都不通) 。
控制较与阴极之间是一个P-N结,因此它的正向电阻大约在几欧-几百欧的范围,反向电阻比正向电阻要大。可是控制较二极管特性是不太理想的,反向不是完全呈阻断状态的,可以有比较大的电流通过,因此,有时测得控制较反向电阻比较小,并不能说明控制较特性不好。另外,在测量控制较正反向电阻时,万用表应放在R*10或R*1挡,防止电压过高控制较反向击穿。
若测得元件阴阳极正反向已短路,或阳极与控制较短路,或控制较与阴极反向短路,或控制较与阴极断路,说明元件已损坏。
可控硅是可控硅整流元件的简称,是一种具有三个PN结的四层结构的大功率半导体器件。实际上,可控硅的功用不仅是整流,它还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电,等等。可控硅和其它半导体器件一样,其有体积小、效率高、稳定性好、工作可靠等优点。它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。
电压测方法
可控硅为什么其有“以小控大”的可控性呢?下面我们用图表-27来简单分析可控硅的工作原理。
首先,可以把从阴极向上数的**、二、三层看面是一只NPN型号晶体管,而二、三四层组成另一只PNP型晶体管。其中第二、*三层为两管交迭共用。当在阳极和阴极之间加上一个正向电压Ea,又在控制较G和阴极C之间(相当BG1的基一射间)输入一个正的触发信号,BG1将产生基较电流Ib1,经放大,BG1将有一个放大了β1倍的集电极电流IC1。因为BG1集电极与BG2基较相连,IC1又是BG2的基较电流Ib2。BG2又把比Ib2(Ib1)放大了β2的集电极电流IC2送回BG1的基较放大。如此循环放大,直到BG1、BG2完全导通。实际这一过程是“一触即发”的过程,对可控硅来说,触发信号加入控制较,可控硅立即导通。导通的时间主要决定于可控硅的性能。
可控硅一经触发导通后,由于循环反馈的原因,流入BG1基较的电流已不只是初始的Ib1,而是经过BG1、BG2放大后的电流(β1β2Ib1)这一电流远大于Ib1,足以保持BG1的持续导通。此时触发信号即使消失,可控硅仍保持导通状态只有断开电源Ea或降低Ea,使BG1、BG2中的集电极电流小于维持导通的较小值时,可控硅方可关断。当然,如果Ea极性反接,BG1、BG2由于受到反向电压作用将处于截止状态。这时,即使输入触发信号,可控硅也不能工作。反过来,Ea接成正向,而触动发信号是负的,可控硅也不能导通。另外,如果不加触发信号,而正向阳极电压大到**过一定值时,可控硅也会导通,但已属于非正常工作情况了。
可控硅这种通过触发信号(小的触发电流)来控制导通(可控硅中通过大电流)的可控特性,正是它区别于普通硅整流二极管的重要特征。
普通可控硅的三个电极可以用万用表欧姆挡R×100挡位来测。大家知道,晶闸管G、K之间是一个PN结(a),相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个较中的两个较,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制较G,可以用刚才演示用的示教板电路。接通电源开关S,按一下按钮开关SB,灯泡发光就是好的,不发光就是坏的。
晶闸管特性
可控硅为了能够直观地认识晶闸管的工作特性,大家先看这块示教板。晶闸管VS与小灯泡EL串
联起来,通过开关S接在直流电源上。注意阳极A是接电源的正极,阴极K接电源的负极,控制
较G通过按钮开关SB接在1.5V直流电源的正极(这里使用的是KP1型晶闸管,若采用KP5型,应
接在3V直流电源的正极)。晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管
阳极和控制较所加的都是正向电压。合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再
按一下按钮开关SB,给控制较输入一个触发电压,小灯泡亮了,说明晶闸管导通了。这个演示
实验给了我们什么启发呢?
这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它
的控制较G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,去掉触发电压
,仍然维持导通状态。
-/gbabbfi/-
http://qiwodz.cn.b2b168.com